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Fig. 1: We present Humanoid Goalkeeper, capable of performing goalkeeping tasks across various regions with a wide operational range (b, c), and
initiating from arbitrary postures (a). Our policy enables the robot to escape an incoming ball with jump and squat motions (d).

Abstract— We present a reinforcement learning framework
for autonomous goalkeeping with humanoid robots in real-
world scenarios. While prior work has demonstrated similar
capabilities on quadrupedal platforms, humanoid goalkeeping
introduces two critical challenges: (1) generating natural,
human-like whole-body motions, and (2) covering a wider
guarding range with an equivalent response time. Unlike
existing approaches that rely on separate teleoperation or fixed
motion tracking for whole-body control, our method learns a
single end-to-end RL policy, enabling fully autonomous, highly
dynamic, and human-like robot-object interactions. To achieve
this, we integrate multiple human motion priors conditioned
on perceptual inputs into the RL training via an adversarial
scheme. We demonstrate the effectiveness of our method through
real-world experiments, where the humanoid robot successfully
performs agile, autonomous, and naturalistic interceptions of
fast-moving balls. In addition to goalkeeping, we demonstrate
the generalization of our approach through tasks such as
ball escaping and grabbing. Our work presents a practical
and scalable solution for enabling highly dynamic interactions
between robots and moving objects, advancing the field toward
more adaptive and lifelike robotic behaviors. More details,
including videos and implementation, are available on our
project website and GitHub repository.

I. INTRODUCTION

Developing robotic soccer capabilities inherently requires
tight integration of perception, decision-making, and agile
motor control, making it an appealing benchmark [1–5] for
evaluating motion intelligence. Within this domain, goalkeep-
ing stands out as a distinct subtask with many underexplored
challenges. Unlike dribbling [6, 7] or shooting [8, 9], which
primarily involve the lower limbs and interact with slow or
static objects, goalkeeping requires rapid, full-body responses
to highly dynamic stimuli. Advancing robotic goalkeeping is

therefore a crucial step toward fully autonomous, real-time
physical intelligence.

Despite the growing interest in robotic goalkeeping, includ-
ing recent advances in dynamic skills on quadrupeds, existing
systems remain limited in several critical aspects: being
confined to kid-sized platforms [10], relying on fixed motion
primitives [11] and operating within narrow interception
ranges. Meanwhile, emerging developments in reinforcement
learning (RL) [12, 13], imitation-driven motion priors [14,
15], and human motion recovery pipelines [16–18] open
new avenues for addressing these limitations. Coupled with
the advent of high-performance humanoid hardware and
scalable learning frameworks, it is now feasible to explore
goalkeeper behaviors that: (1) exhibit human-like, whole-body
interactive motions; (2) respond effectively under extreme
time constraints; and (3) perform highly dynamic actions to
cover broad and diverse interception regions.

In this paper, we present the Humanoid Goalkeeper,
a reinforcement learning–based framework for agile and
autonomous goalkeeping on humanoid robots. Our method
learns a single end-to-end control policy that integrates task-
specific rewards with motion priors through an adversarial
training scheme, enabling policies that optimize both task
performance and motion realism. To address the challenge of
wide operational coverage, we condition motion learning on
ball landing positions, effectively dividing the constraint space.
To ensure real-world feasibility, we incorporate perception
noise, trajectory estimation, and multi-modal sensing into the
training loop to close the sim-to-real gap. Through extensive
evaluations in both simulation and hardware, we demonstrate
that our approach enables fast, reactive, and naturalistic

https://humanoid-goalkeeper.github.io/Goalkeeper/
https://github.com/InternRobotics/Humanoid-Goalkeeper


interception of high-speed flying balls. Furthermore, we
show that the learned policy generalizes to related dynamic
interaction tasks such as escaping and grabbing, highlighting
the framework’s potential for broader lifelike and adaptive
humanoid behaviors.

II. RELATED WORK

Dynamic Object Interactions with floating base. Recent
advances have yielded impressive results in interactions
between dynamic object and mobile robots, with notable
applications in tasks such as badminton [19, 20], table
tennis [21–25], mobile-manipulator-based catching [26, 27],
throwing [28], and soccer [1, 4, 6, 7, 29, 30]. These studies
have successfully demonstrated millisecond-level interactions
between robots and dynamic objects, with a strong integration
of perception, planning, and control systems. These methods
excel in specific domains such as performing consecutive
actions [21], multi-agent coordination [4, 31] or professional
level skill [22], but they are constrained by narrow movement
ranges or lack the dynamic whole-body agility required for
humanoid systems. In this work, we address these gaps by
developing a humanoid goalkeeper capable of covering wide
movement ranges, while executing agile and human-like
whole-body motions.

Whole body control with motion priors Integrating
imitation learning with the RL framework has become a
popular approach for transferring human motion skills to
humanoid robots. A majority of these methods strictly mimic
reference trajectories following the fixed time phase [32–36].
These methods are typically limited to non-interactive tasks,
such as dancing or locomotion [37, 38], or are restricted to
predefined interaction moments within the reference [21, 39–
43]. In contrast, adversarial motion priors (AMP) [14] offer
an alternative approach by integrating expert data without
enforcing strict temporal alignment. However, this potential
has yet to be fully explored in real-world humanoid tasks,
with current frameworks limited to simpler locomotion tasks
[44, 45]. Meanwhile, multi-motion prior synthesis has been
explored through task-condition tokens [46] or sub-task policy
selection [47] in the animation domain. Similarly, previous
quadruped goalkeepers have learned to select from a set of pre-
learned low-level skills [29] for different ball target regions.
Building upon these experiences, our approach trains the
robot with task rewards and motion discriminators specific to
different ball target regions, activating only the corresponding
constraints during each trial. The proposed pipeline results
in a one-stage, end-to-end, hardware-deployable policy that
achieves dynamic interactions while maintaining reference
motion resemblance.

III. METHOD

We create the humanoid goalkeeper that can autonomously
perform successfully keeping skills while adaptively conform-
ing to human motion priors. Our approach (Fig. 2) centers
on an end-to-end reinforcement learning (RL) policy that
generates highly dynamic and fully autonomous keeping
behaviours. The policy operates directly on real-time ball

position observations, which also serve as conditioning
variables for integrated human motion priors. These priors are
incorporated into the RL process via an adversarial training
scheme, promoting robust and naturalistic motion generation
without reliance on predefined trajectories or strict motion
tracking.

Our method advances prior work by addressing two
critical challenges: (1) We propose a unified framework that
jointly enforces task success and motion realism through
observation-conditioned adversarial training, eliminating the
need for separate optimization stages; and (2) we demonstrate
hardware-feasible, high-dynamic performance on real-world
humanoid robots.

Fig. 2: Method framework: We train our policy using an end-to-end
reinforcement learning (RL) framework, incorporating position-conditioned
task and motion constraints. Our method is capable of operating with either
an onboard camera or the motion-capture (MoCap) system.

A. Goalkeeper Training through RL

Our learning system is designed to optimize two primary
objectives: (1) task success and (2) motion resemblance to
human demonstrations. This section details our reinforcement
learning–based optimization process for enabling successful
goalkeeping skills.

1) Training Environment: We train policies using the
standard PPO algorithm [12], implemented in the IsaacGym
simulator [13]. The policy trains the robot to stop a flying
ball before hitting into the goal line.

The observation space includes the observed ball‘s position
Oball, combined with proprioceptive observations Op. These
are used as actor inputs Ot, with a history of length T to
capture temporal information necessary for predicting the
ball’s motion trajectory.

Each episode begins with a ball launched toward the robot.
The training environment is divided into k regions, denoted
as R = 0, 1, 2, . . . , k, where each region corresponds to a
specific area on the goal line where the ball may arrive. The
region is determined at the start of each episode, then we
sample a random landing position pland within that region
and assign the ball’s velocity accordingly to reach the target.
Table I outlines the observation space used during training.
All ball-related observations are computed in the robot’s local
frame, facilitating direct deployment with onboard perception.



TABLE I: Observation spaces for the actor and critic network.

Observation Actor Critic
Ball position (in local frame) (Oball ∈ R3) ✓ ✓
Base angular velocity (ωbase ∈ R3) ✓ ✓
Projected gravity vector (gbase ∈ R3) ✓ ✓
Joint positions (q ∈ R29) ✓ ✓
Joint velocities (q̇ ∈ R29) ✓ ✓
Previous action (alast ∈ R29) ✓ ✓
Base linear velocity (vbase ∈ R3) – ✓
End target region (R = 0, 1, 2, . . . , k) – ✓
End effector target (ptarget ∈ R3) – ✓
Ball velocity (in local frame) (vball ∈ R3) – ✓
Left hand position (pleft

hand ∈ R3) – ✓

Right hand position (pright
hand ∈ R3) – ✓

Reach Distance (∥ptarget − p
(R)
hand∥) – ✓

2) Position-Conditioned Task Rewards: We introduce
position-conditioned task rewards rt that guide the robot to
keep the ball away from the goal line by tracking a dynamic
target. The end target ptarget is designed to prompt the robot
to predict the landing point of the approaching ball, touch
and punch it away when it is close, and then hold a static
position after the ball is stopped (Fig. 3). When the ball is
flying towards the rbobot, we have:

ptarget = pland · 1dx>dth
+ pball · 1dx≤dth

, (1)

where 1condition selects the corresponding target based on
the distance between the ball and the robot, dx denotes the
distance between the ball and the goal line, and dth stands
for the approaching threhold. Then we define the following
smooth, distance-based reward using a sigmoid function to
encourage the end-effector (hand) to reach the target position:

rt = {1−
1

1 + exp[−σkeep(∥ptarget − p
(R)

hand∥ − dkeep)]
}×(1+ν

(R)
), (2)

where σkeep is the scaling factor and dkeep is a catch distance
threshold indicating when the end-effector is sufficiently close
to the ball. The reward rt is conditioned on the landing region
R through computing the distance between the selected hand
and the end target ∥ptarget − p

(R)
hand∥. For example, if the ball

is flying toward the left region, the robot should use its left
hand to intercept it, and similarly for the right region.

Fig. 3: This design ensures that when the ball is far from the robot, the
interaction is based on the predicted landing point, whereas for closer balls,
the target position is the actual ball location, allowing for more precise
handling near the robot.

We introduce a position-conditioned dynamics modula-
tion term ν(R) to encourage whole-body motions such as

lateral shifts or jumps, depending on the region R:

ν(R) = νy · 1R∈right + (−νy) · 1R∈left + νz · 1R∈up, (3)

ν(R) promotes consistent whole-body motions that support
coordinated end-effector movements during interception.

In addition to the position-conditioned reward rt, we incor-
porate additional reward terms to enforce motion constraints
and promote hardware-feasible behavior. The full reward
formulation is provided in the appendix.

3) Post-Task Stablility: We set the episode length to 3
seconds, which is considerably longer than the ball’s flight
time (typically 0.4– seconds), in order to allow for post-task
stabilization. To encourage the robot to maintain a normalized
posture after the ball has passed, we introduce post-task
reward terms that promote balance and recovery from the
high-dynamic keeping motion. These rewards are generally
defined as:

rpost = exp (−σstable · ∥Errstable∥) · 1ball stopped, (4)

where Errstable denotes the deviation of key stability-related
quantities—such as base height, angular velocity, and ori-
entation—from their nominal values. The indicator function
1ball stopped activates the reward only after the ball has been
kept or flying behind the robot. In addition, we reset a subset
of environments not to the default joint configuration, but
instead to the joint positions sampled from other ongoing
environments. This forces the robot to begin a new trial in
the middle of a previous keeping motion, rather than from
a nominal reset state. In addition to promoting stability, we
found this strategy effective for learning continuous keeping
behaviors, as the robot can initiate new episodes without
returning to a default pose.

B. Optimization with Motion Constraints

We include a position-conditioned adversarial motion prior
(AMP) reward to impose motion constraints during training,
encouraging the robot to exhibit appropriate movement styles
based on the ball’s landing region (see Fig. 2). Inspired
by [29], which addresses region-specific goalkeeping in
quadrupeds, we incorporate imitation learning into reinforce-
ment learning to promote region-consistent behaviors. These
motion constraints are derived from a task-specific motion
library constructed from human demonstrations.

1) Reference Motion Curation: We first leverage existing
pipelines (GVHMR [16]) that extract humanoid motions from
self-recorded RGB videos (Fig. 4). Next, we retarget the
extracted motions to the Unitree G1 robot and store the
resulting joint position sequences qt in a region-specific
motion reference buffer.

2) Optimize with Motion Constraints: The motion con-
straints are implemented using adversarial motion prior (AMP)
rewards [14], which encourage the robot to exhibit region-
consistent motion styles during interception. To this end,
we define position-conditioned AMP rewards by associating
each region R with a dedicated reference motion slot and
a corresponding discriminator D(R). Each discriminator is
trained to distinguish between state transitions from the



Fig. 4: The motion curation and formulation pipeline, demonstrating the process from human video to robot-executed motion.

reference motions and those generated by the policy. The
training objective for D(R) is:

arg min
D(R)

E
(qt,qt+1)∼d

(R)
M

[
(D(R)(qt, qt+1)− 1)2

]
+ E

(qt,qt+1)∼d
(R)
π

[
(D(R)(qt, qt+1) + 1)2

]
, (5)

where d
(R)
M and d

(R)
π denote the distributions of joint position

transitions (qt, qt+1) from expert reference motions and from
the policy, respectively, conditioned on region R.

Given the high accuracy requirements of our task, we
apply motion constraints more softly to avoid conflicts with
task-specific objectives. Unlike the original AMP formula-
tion—which directly scores executed motions and rewards
those that closely match the reference distribution—we
generate Gaussian samples around each executed motion
and reward only the one with the highest discriminator score.
This encourages smooth alignment with the reference motion
distribution, allowing the policy to receive similar rewards for
nearby motions while letting the task objectives determine
the precise execution. The AMP reward is computed as:

ramp = max
j∈{1,...,N}

{
max

[
0, 1− 0.25

(
D(q̃

(j)
t , q̃

(j)
t+1)− 1

)2
]}

,

(6)
where each (q̃

(j)
t , q̃

(j)
t+1) is sampled from a Gaussian centered

at the executed transition (qt, qt+1).

C. Aligning Sim2Real Perception

Acquiring hardware-deployable ball perception and bridg-
ing the sim-to-real gap are critical challenges in dynamic
object interaction tasks. In this work, the robot receives
the ball position relative to its torso frame, represented
by the observation vector Oball ∈ R3. We implement two
hardware-based perception systems to acquire the ball position
Oball: 1) a motion capture (MoCap) system using markers
placed on the robot’s head and the ball, where Oball is
computed from the relative position between the two as
reported by the MoCap system; 2) a depth camera (Intel
RealSense D435i) mounted on the robot’s head with an
infrared (IR) filter [4], which detects a high-reflectivity ball
and directly estimates Oball from the camera’s perception
pipeline. While both systems provide reasonably accurate ball

position estimates, performance gaps remain due to calibration
errors and perception limitations—such as occlusions in the
MoCap system and field-of-view constraints in the camera-
based system. To mitigate these issues, we incorporate a ball
position estimator into the policy and introduce training-time
noise to improve robustness across both perception modalities.

1) Ball Estimator: We integrate a ball estimator into the
training loop, which is effective in identifying regions (for
task and motion conditions) and accurately predicting ball
positions and moving trajectories (Fig. 2), fully utilizing
historical observations. The position estimator is trained with
Mean Squared Error (MSE) loss to minimize the prediction
error of the ball’s position, while the region estimator is
trained using Cross-Entropy Loss to classify the correct region
where the ball is likely to land.

2) Training Noises: To simulate real-world perception
uncertainties, we introduce noise into the ball observation
Oball during training. Specifically, we apply: 1) position
noise—random perturbations of up to 5cm, which is half
the ball’s 10cm radius—to mimic typical sensing errors; and
2) random dropouts—Oball is occasionally set to zero after
0.4s of flight, simulating occlusions or out-of-FOV cases
encountered in hardware perception when the ball approaches.
Additionally, once the ball has stopped flying (e.g. after being
intercepted or landing), we set Oball = 0 to reflect the absence
of further tracking. The robot is then encouraged to hold its
final pose, as described in Section III-A.3.

IV. EVALUATIONS

We conduct a series of experiments to comprehensively
evaluate the proposed method, focusing on the following
objectives: 1) to validate the effectiveness of our method in
mastering humanoid goalkeeping skills (in terms of success
rate and coverage), 2) to assess the resemblance between
robot-executed motions and expert demonstrations, and 3) to
evaluate the benefit of the proposed position-conditioned
learning scheme compared to non-division baselines. To
this end, we design evaluation metrics that reflect task
performance, motion fidelity, and action smoothness:



TABLE II: Simulation Results.

Method Task Motion Smoothness

Esucc ↑ Eee task ↓ Ematch(R) ↑ Epos(min) ↓ Epos(R) ↓ Edof acc ↓ Esmth ↓

Ablation Motion / Task Constraints
w.o. Task Constraints 9.44±4.82 0.55±0.018 64.33±5.37 0.76±0.012 0.98±0.060 14.26±0.275 0.030±0.001

w.o. Motion Constraints 31.69±1.18 0.98±0.172 8.83±4.50 1.73±0.018 2.03±0.025 62.23±4.368 0.151±0.015

Humanoid Goalkeeper (ours) 80.92±1.72 0.12±0.004 67.84±1.49 1.24±0.017 1.31±0.021 22.80±0.404 0.042±0.001

Ablation Position Division
w.o. AMP Division 76.11±2.19 0.14±0.010 25.73±5.03 1.39±0.007 1.51±0.015 23.18±0.326 0.043±0.000

w.o. Task Division 62.08±4.30 0.14±0.005 39.18±3.60 1.62±0.007 1.84±0.030 28.69±0.329 0.054±0.000

w.o. Division 64.83±5.07 0.14±0.004 19.09±5.39 1.62±0.023 1.87±0.057 28.56±0.450 0.052±0.001

Humanoid Goalkeeper (ours) 80.92±1.72 0.12±0.004 67.84±1.49 1.24±0.017 1.31±0.021 22.80±0.404 0.042±0.001

Evaluation Settings
Speed-Easy (0.7s ∼ 1.0s) 80.95±4.21 0.12±0.012 50.88±3.28 1.26±0.008 1.37±0.021 23.20±0.432 0.042±0.001

Range-Easy (±1.0m) 84.64±2.75 0.13±0.011 63.16±4.47 1.26±0.007 1.32±0.012 22.23±0.244 0.041±0.000

Speed-Hard (0.4s ∼ 0.7s) 64.25±7.23 0.13±0.009 70.47±3.53 1.26±0.013 1.29±0.015 21.85±0.324 0.041±0.000

Range-Hard (±2.0m) 63.91±2.29 0.15±0.007 63.45±7.92 1.26±0.009 1.33±0.012 24.42±0.449 0.044±0.001

Default (0.5s ∼ 1.0s, ±1.5m) 80.92±1.72 0.12±0.004 67.84±1.49 1.24±0.017 1.31±0.021 22.80±0.404 0.042±0.001

Fig. 5: Each scatter point represents a trial, with the position corresponding to the ball target of the trial. The color gradient of the points indicates
Epos(min) for each trial. The pentagram represents the cluster center of trials that has the same matching region (regions with minimal Epos). A well-learned
position-conditioned policy should exhibit a clear correspondence between the cluster centers and their respective ball target regions

Esucc ↑ Success rate of blocking the ball.

Eee task ↓ Closest distance between the end effector
(hand) and ball during a trial.

Epos(R) ↓ pose error to expert motion (processed through
DTW [48]) from the ball target region R.

Epos(min) ↓ Lowest pose error between executed motion
and expert motion among all the regions.

Ematch(R) ↑ Whether the closest-matching motion aligns
with the ball target region R.

Edof acc ↓ Joint acceleration: 1
∆t |q̇t − q̇t−1|.

Esmth ↓ Action smoothness: |at − 2at−1 + at−2|.

During training and evaluation in simulation, the goal
area is partitioned into six predefined ball landing regions,
with corresponding expert motions visualized in Fig. 4 and
the region boundaries illustrated in Fig. 5. We conduct 500
simulation trials and 5 hardware trials for each region. The
ball flight duration ranges from 0.5 s to 1.0 s, with flying
distances varying from 3.0m to 5.0m. The goal used in
hardware evaluations corresponds to the standard dimensions
of a 5-a-side soccer match, with a width of 3.0m (between
the goalposts) and a height of 2.0m.

A. Simulation Results

Table II summarizes the primary numerical results from our
simulation experiments. The proposed method achieves the
highest task success rate while also demonstrating superior

motion resemblance compared to all baselines. These out-
comes support our core hypothesis: aligning task constraints
with appropriate motion constraints yields better overall
performance. Notably, the w.o. AMP Division variant—which
lacks explicit motion segmentation but retains region-based
task constraints—achieves moderately competitive success
and motion metrics. This result suggests that correct task
conditioning can guide action selection to some extent.
However, its performance still lags behind the full method,
highlighting the importance of explicit motion correspondence
in achieving high-quality, task-aligned behaviors.

Given the default keeping ranges of (±1.5m) in width
and (1.8m) in height, the proposed method achieves a
notably high success rate—despite operating over one of the
widest goalkeeping areas reported in the robotic goalkeeping
literature. To further assess robustness, we evaluate the method
under varying ball speeds and expanded guarding regions. As
expected, the results indicate a gradual decline in performance
as task difficulty increases, validating the method’s scalability
while revealing its current limitations under more challenging
conditions.

The smoothness metric serves as a useful indicator for
assessing how well the alignment between motion and task
constraints translates into natural robot behavior. Our results
support this connection: our policy that guided by accurate
expert motions achieve better smoothness. Interestingly, the
baseline without explicit task constraints—relying solely
on AMP and regularization rewards—achieves the best



TABLE III: Hardware Results.

Method Right-Low Right-Mid Right-Up

Esucc ↑ Epos(min) Edof acc ↓ Esucc Epos(min) Edof acc Esucc Epos(min) Edof acc

Humanoid Goalkeeper (camera) 1/5 1.67 21.79 3/5 1.46 21.30 3/5 1.56 32.99
w.o. AMP Division (mocap) 0/5 1.43 31.02 3/5 1.36 20.62 0/5 1.47 31.33
w.o. Division (mocap) 1/5 1.66 36.13 0/5 1.46 31.09 2/5 1.57 34.47
Humanoid Goalkeeper (mocap) 5/5 1.49 33.34 4/5 1.28 24.56 1/5 1.43 29.43

Method Left-Low Left-Mid Left-Up

Esucc ↑ Epos(min) Edof acc ↓ Esucc Epos(min) Edof acc Esucc Epos(min) Edof acc

Humanoid Goalkeeper (camera) 1/5 1.70 24.04 3/5 1.53 21.71 3/5 1.58 28.12
w.o. AMP Division (mocap) 5/5 1.48 35.25 2/5 1.54 18.60 3/5 1.47 27.68
w.o. Division (mocap) 3/5 1.48 29.88 3/5 1.43 23.77 3/5 1.68 38.87
Humanoid Goalkeeper (mocap) 5/5 1.68 28.76 3/5 1.44 22.08 3/5 1.40 27.16

Fig. 6: We visualize the 3D trajectory of the ball, as well as the left and right hand trajectories for one trial in each region, and compare the performance of
the proposed method with that of the non-division baselines.

smoothness performance. This suggests that, in the absence
of region-based goals, the robot may prioritize generic motion
regularity over task effectiveness, resulting in smoother but
less purposeful behaviors.

Fig. 5 provides a region-based visualization of motion
behavior to validate our approach. In each subplot, the
pentagram represents the cluster center of robot-performed
motions that best match the specific expert motion. The
results show that our method learns region-conditioned motion
effectively, with distinct and consistent clusters emerging for
each region. In contrast, baseline methods tend to mix motions
across regions, resulting in less coherent behaviors and higher
joint position errors. This highlights the effectiveness of
our region-conditioned policy learning in preserving motion
structure aligned with task semantics.

B. Region-Specific Hardware Evaluation

Table III presents region-specific hardware evaluation
results on the goalkeeping task. The proposed method
achieves a total success rate of 21/30, with most failure
cases concentrated in the upper regions. These upper re-
gions demand stricter alignment between the end-effector

and the ball trajectory, as well as wide-range, whole-body
motions—posing greater challenges compared to the lower
and side regions.

Despite these challenges, our method exhibits the smallest
sim-to-real performance drop among all compared methods.
In contrast, non-division baselines tend to overfit to one side
of the goal and underperform in other regions. Specifically,
their performance on the left side consistently exceeds that
on the right, indicating a lack of generalization across the full
goal area. We further illustrate this phenomenon in Fig. 6,
which visualizes the ball trajectory and end-effector motion
(recorded via MoCap). The visualization shows that, for balls
targeting the right-side regions, the robot controlled by a
non-division baseline fails to initiate an early lateral step,
resulting in missed saves due to the short response window.
Conversely, our method accurately guides the end-effector to
the appropriate region from the onset, resulting in successful
interception. This highlights the effectiveness of region-aware
motion learning in achieving balanced, robust performance
across the entire goal.



Fig. 7: We demonstrate the generalization ability of the extended tasks, including ball grabbing and ball escaping.

Fig. 8: the first-view illustration of on-board camera perception.

C. Performance with Camera perception

The performance under camera-based perception drops
to 14/30 successful trials, compared to the MoCap setup.
The primary limitation stems from the narrow camera field
of view (FoV), which reduces the observable time window
of the ball. As shown in Fig. 8, the high-reflectivity ball
is easily detectable through the camera’s infrared channel
at a distance. However, as the ball approaches the robot, it
quickly disappears from view, leaving less than 0.3 seconds
of observable time for lower regions. This limited visibility
contributes to the decline in success rate due to the lack of
consistent ball tracking.

Despite the FoV constraints, the camera-based system still
achieves high success rates in the upper regions, where the ball
remains visible for longer periods. This result demonstrates
the robustness and adaptability of the proposed method when
relying solely on onboard perception. Furthermore, the per-
ceptual constraint naturally suppresses large, abrupt motions
(such as lateral jumps), resulting in smoother behaviors, as
reflected by improved Edof acc scores compared to the MoCap-
based evaluations.

D. Perform Continuous Keeping

Fig. 9 demonstrates that the proposed pipeline enables
the robot to continuously perform goalkeeping skills without
requiring a manual reset to default states between trials. This
is evidenced by two consecutive successful interceptions from
both sides of the goal. As shown by the timestamps on the
snapshots, the robot transitions directly from the terminal
posture of the first trial to the initiation of the second, without

Fig. 9: Snapshots of the robot performing continuous goalkeeping without
resetting to the default posture.

entering a recovery phase. This capability highlights the
potential of our method for real-world scenarios that demand
uninterrupted, match-like behavior.

E. Generalization Tasks

Centered on the goalkeeper task, we introduce an effective
framework that enables humanoid robots to perform whole-
body interactions with dynamic objects by leveraging learned
motion priors. To demonstrate the generalization capability
of our framework beyond goalkeeping, we extend it to two
additional tasks that also demand highly dynamic responses:
(1) escaping from an incoming flying ball, and (2) grabbing
a moving ball using a soft bag.

These motions are developed using the same position-
conditioned approach employed in goalkeeping. Specifically,
we partition the input space based on the ball’s spatial
characteristics: high vs. low positions correspond to jump and
squat escapes, respectively; left vs. right positions correspond
to left- and right-stepped ball grabs. We show this region-
based division ensures appropriate motion selection under
varying conditions. Table IV presents the quantitative results
of our method on these tasks.

TABLE IV: Escape Task Evaluation.

Task Esucc ↑ Epos(min) Edof acc ↓

Jump Escape 3/5 1.49 46.79
Squat Escape 5/5 1.12 16.19
Grab Tennis 1/5 0.99 18.25

In the escape task, the robot achieves a high success
rate and closely replicates expert motion Fig. 7, validating
the effectiveness of our generalzaition ability. The robot is
capable of reacting to an incoming ball and executing a
successful escape maneuver within 0.5 seconds. Meanwhile,
jumping from a stationary stance constitutes a highly dynamic
maneuver, leading to substantial joint accelerations. The
grabbing task exhibits a lower success rate, due to the absence



of bag during training. In simulation, a successful grab is
defined as the ball falling between the robot’s two hands,
implicitly assuming a consistently open and rigid bag structure.
However, in real-world trials, the deformability and varying
orientation of the soft bag’s mouth frequently violate this
assumption, as illustrated in Fig. 10. Despite these difficulties,
we observe that the robot reliably moves toward the ball’s
predicted landing location.

Fig. 10: The uncontrollable nature of the bag contributes to the low grabbing
success rate.

V. DISCUSSION

We have developed a humanoid robotic goalkeeper capable
of executing agile, human-like motions to intercept flying
balls, as well as performing tasks such as escaping a ball
using jump and squat movements. Our results show that
explicitly aligning task and motion constraints based on task
observations significantly improves both motion quality and
task completion. Extensive experimental evaluations, along
with alternative perception modules, provide strong evidence
supporting the effectiveness of our method.

However, as the first humanoid-level autonomous goal-
keeper, there is still room for improvement before achieving
professional-level goalkeeping performance. Specifically:

(1) the lack of global observations and a high-level planning
module limits our framework’s ability to perform consecutive
goalkeeping actions at the match level.

(2) the perception module requires further refinement
to react appropriately to complex situations in real-world
scenarios. Currently, the robot responds to any ball detected
within its field of view, even when the ball is not targeting
the goal, which is not valid in real matches.

Future work could focus on adding a high-level planner to
enable continuous goalkeeping actions, such as repositioning
after each trial. Additionally, improving the perception system
by integrating active sensing capabilities to overcome camera
field-of-view (FOV) limitations and eliminating the reliance
on fixed motion-capture systems will be crucial for enhancing
robustness and flexibility in real-world settings. Furthermore,
to advance the robot’s current motions, we believe training it
to grab the ball with its hand, rather than simply punching it
away, would present an appealing challenge and a valuable
demonstration for humanoid-object interaction skills.
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